Integrating DERs on the Grid: Inverter Transient Overvoltage

Frances Bell
Senior Power Systems Engineer
Grid Engineering Solutions

October 23rd, 2015

Agenda

Load Rejection Overvoltage Testing

Ground Fault Overvoltage Testing

Ongoing Pilots and Projects

- LRO occurs when a portion of a feeder containing significant PV resources and equal or smaller amount of load becomes disconnected.
- Generation to load ratio (GLR) exceeds unity.
- Theoretical maximum LRO predicted by an ideal current source \sqrt{GLR} .

- Theory and simulation poorly predict LRO because
 - Inverters are more complex than constant current sources
 - Inverters are not a voltage behind impedance
 - Many inverters have a self-protection overvoltage trip

- Standard inverter topology includes an antiparallel rectifier that enables out-of-phase current flow.
- If the AC side voltage rises above the DC side voltage, the rectifier will clamp the AC peak to the DC voltage.

- At unity or low GLR, output was sinusoidal with varying magnitude near nominal.
- At medium to high GLR, waveform clipped at DC bus voltage.

GLR = 10:1

 Inverters responded with much lower over-voltage magnitudes than predicted by simple models of inverters as ideal current sources

 Used to update HECO interconnection requirements. Justified move from 120% to 250% minimum daytime load (MDL) PV penetration.

SolarCity, HECO and NREL testing removed *Transient Overvoltage* as a DER integration challenge

interconnection and utility-installer relations?

Agenda

Load Rejection Overvoltage Testing

Ground Fault Overvoltage Testing

Ongoing Pilots and Projects

Ground Fault Overvoltage – 0. Normal Condition

Symmetrical Components

Ground Fault Overvoltage – 1. Fault Happens

Symmetrical Components

Ground Fault Overvoltage – 2. Breaker Opens

Single Line

Symmetrical Components

Ground Fault Overvoltage - Must Consider Loads

- Inverters are often best represented as a current source that is power regulated. Therefore, the loads must be considered.
- If the zero-sequence path is not broken, grounding transformers do not mitigate the overvoltage, but can negatively impact circuit protection.

 Current-controlled inverters will not cause the high, sustained overvoltages at their output terminals associated with neutral shift following a ground-fault.

 Provides justification to improve technical criteria and mitigation approaches involving grounding transformers.

Agenda

Load Rejection Overvoltage Testing

Ground Fault Overvoltage Testing

Ongoing Pilots and Projects

SDG&E Volt/VAR Pilots

- Field test to demonstrate positive impact of advanced inverter
 Volt/VAR control functionality on circuits with high penetration PV.
- Test baseline, autonomous control, and central control.
- Determine optimal inverter Volt/VAR curves and best use cases for autonomous vs. central control.

SCE DER Aggregation Pilot

Study the degree to which aggregated DERs can offer reliability benefits to the grid.

NREL Multi-Inverter Anti-Islanding

- Prove that active anti-islanding capability does not degrade with multiple inverters.
- Grid-support functions activated including:
 - High/Low Voltage Ride Through
 - High/Low Frequency Ride Through,
 - Autonomous VAR and frequency control
- First time anti-islanding capabilities will be tested at independent points of common coupling.

Questions?

Frances Bell

Senior Power Systems Engineer Grid Engineering Solutions SolarCity

fbell@solarcity.com solarcity.com/gridx

